
X10X: Model Checking a New Programming Language
with an “Old” Model Checker

Milos Gligoric
University of Illinois

Urbana, IL 61801, USA
gliga@illinois.edu

Peter C. Mehlitz
NASA Ames Research Center
Moffett Field, CA 94035, USA

peter.c.mehlitz@nasa.gov

Darko Marinov
University of Illinois

Urbana, IL 61801, USA
marinov@illinois.edu

Abstract—Parallel and distributed computing is becoming a
norm with the advent of multi-core, networked, and cloud com-
puting platforms. New programming languages are emerging
for these platforms, e.g., the X10 language from IBM. While
these languages explicitly support concurrent programming,
they cannot eliminate all concurrency related bugs, which are
usually hard to find and analyze. This requires specialized tools,
including model checking, which needs to be language-aware
to facilitate adoption.

We address the following question: How to create a high
quality systematic testing (or model checking) tool for a new
language, such as X10, in a reasonable amount of time?
Development from scratch is not an option since it can require
the same effort as the language itself. Thus, our approach is
to start with an existing tool and change it only as necessary.
Specifically, we have a readily available model checking tool
for Java, JPF, and X10 programs can be compiled to Java.
Unfortunately, checking X10 programs with unmodified JPF
and X10 runtime can miss some behaviors and scales poorly.
This paper describes four sets of techniques that can be
employed to make checking “new” language with an “old”
model checker more practical: (1) modify the model checker,
(2) modify the language runtime, (3) extend the language
compiler, and (4) develop a new static analysis. We instantiated
each technique to enable checking X10 programs with JPF. New
techniques were evaluated on over 100 X10 example programs
and provide a substantial speedup.

I. INTRODUCTION

The widespread availability of high-speed networks and
multi-core processors has recently spawned development of
several new general-purpose programming languages (or sig-
nificant extensions of the existing languages) for parallel and
distributed programming, e.g., to name a few from industry:
Chapel from Cray [12], DryadLINQ from Microsoft [32],
Fortress from Oracle/Sun [3], Pig from Yahoo! [15], TBB
from Intel [1], and X10 from IBM [9], [26]. While these
new languages make development of more reliable parallel
code easier, such development still remains error-prone, with
potential concurrency bugs including atomicity violations,
dataraces, and deadlocks, or traditional semantic bugs in
sequential portions of the code. A common way to check
for such bugs is to perform systematic testing (or explicit-
state model checking [10]) that explores code behavior for
various interleavings of shared-memory accesses.

This paper focuses on the X10 programming language
being developed at the IBM Research in collaboration with
academic partners [9], [26]. X10 is a modern language
designed for high-productivity and high-performance com-
puting on high-end platforms [31], its name reflecting the
goal of increasing both productivity and efficiency of parallel
programming by an order of magnitude. X10 is a stati-
cally typed, object-oriented language that provides several
abstractions for concurrency, distribution, and locality (as
described later in the text). The current X10 version provides
compilers from X10 to Java and C++, as well as runtime
systems that enable execution of the compiled programs.

We address the following question: How can we create
a high quality model checking tool for a new language,
such as X10, in a reasonable amount of time? One option
is to translate the input language into another language for
an existing tool. For example, Java PathFinder (JPF) [21],
[29] is a popular, open-source model checker for Java
programs that showed promising results, e.g., for checking
NASA software [24]. The very first version of JPF [16],
[17] checked Java code by translating it into the Promela
language and using the Spin model checker [18]. While such
a translation can be developed relatively quickly, it needs
to bridge a potentially large semantic gap between greatly
different languages and may not support all the features of
the input language.

Another option is to build a new model checking tool
from scratch. For instance, the second version of JPF was
developed (in Java) from scratch as a backtrackable Java
Virtual Machine (JVM) that can directly explore programs
compiled to Java bytecode [21], [29]. However, developing
from scratch a high quality tool, which can explore a large
subset of the input language and scales well to non-trivial
code, can take a long time, e.g., JPF development has
taken over 20 man-years, and the JPF core alone has over
100KLOC, with property extensions of about the same size.

Yet another option, possible when the input language
already translates into the language used by a tool, is to
directly use an existing model checking tool. Specifically,
X10 can be compiled into Java, and JPF can check Java
code. Can we simply use JPF to check X10 programs?



Unfortunately, no: checking X10 programs directly with the
unmodified JPF and X10 runtime has two problems. First,
it can miss some executions (and hence miss bugs). Second,
it scales very poorly.

There has been a long line of research on how to adapt an
existing model checker for a new language (or an extension
of an existing language) [5], [8], [11], [13], [17], [19], [25],
e.g., we have recently used JPF for checking a subset of
programs written in the Scala programming language [22].
However, that work focused only on the second problem—
making the checking faster—and provided only one solution
technique—modifying the language runtime. In contrast,
this paper analyzes both problems, provides four sets of
solution techniques, and considers the entire X10 language.

This paper makes the following contributions.
Complete Exploration: We identify the problem that

model checking programs compiled from one language to
another can miss some behaviors. Specifically, running X10
programs compiled to Java on the unmodified JPF and X10
runtime is incomplete. The key reason is that the X10
runtime is designed for fast execution of (parallel) programs
and uses sophisticated techniques such as work stealing [7].
However, such techniques prevent exploration of all possible
interleavings of shared memory accesses. We also found that
JPF did not support some Java constructs used by the X10
runtime. We describe changes to the X10 runtime and JPF
that enable complete exploration of X10 programs on JPF.

Faster Exploration: After ensuring complete exploration,
we focus on speeding up the exploration by developing
techniques (related to partial-order reduction [10]) that prune
some executions equivalent to others. As in related previous
work [5], [8], [11], [13], [16], [17], [19], [22], [25], the goal
is to explore executions induced by the semantics of the
input language and not by the language runtime. Whereas
the previous work achieved speedup only by modifying the
language runtime, we recognized four sets of techniques:
(1) changing the model checker, (2) customizing the runtime
for execution on the model checker, (3) modifying the com-
piler, and (4) introducing a novel static analysis to further
optimize the checking. We modified JPF, X10 runtime, X10-
to-Java compiler and introduced a novel static analysis.

Implementation: We implemented our techniques as a
JPF extension called X10X (from “X10 eXplorer”). We
supported all the constructs from the X10 language and
enabled their exploration on top of JPF, while avoiding non-
determinism introduced by the X10 runtime system.

Evaluation: We evaluated X10X on a large set of X10
example programs. 65 of these programs include all the
example programs from the X10 compiler distribution that
focus on parallel language constructs. 31 programs we wrote
ourselves to understand the X10 language constructs. 11
programs are larger programs from the X10 distribution, and
3 programs are our larger programs. The results show that
our techniques provide over an order of magnitude speedup.

II. EXAMPLE

In this section we introduce the programming model and
key constructs of the X10 language1 through a running
example that is used in the following sections to illustrate our
techniques for complete and faster exploration. Our example
computes a histogram of a given array, i.e., counts how
many elements of the array fall in various bins, where each
bin is simply defined via a modulo operation. This example
comes from the publicly available X10 distribution [30], but
we modified the provided sequential version to explicitly
illustrate X10 parallel constructs. Before we discuss the
example in more detail, we provide a brief, high-level
overview of X10. We finally discuss how our changes affect
the exploration of the example on JPF.

A. X10 Background
X10 is an object-oriented language designed for pro-

gramming multi-cores, GPUs, and clusters. X10 follows
the partitioned global address space (PGAS) programming
model [31], where computation entities share a single global
memory space logically partitioned into places. Places can
either be distributed over a number of machines or reside
on one machine, which depends on the platform used for
the execution of a program. Every object (or a part of the
object, in case of a distributed object) resides during the
entire program execution in place where it is created.

Sequential constructs of X10 are similar to those of Java
with some extensions such as type inference, anonymous
functions, and structs. Due to the X10’s focus on high-
performance computing, the main difference between X10
and Java is related to arrays. Namely, Java-like arrays are
not available in X10 but instead a special set of classes
is used to replace arrays, e.g., the class Array where all
elements reside at one place, or the class DistArray where
the elements are distributed over a number of places. These
classes include many methods used for manipulation of array
objects, e.g., for creating arrays with a given distribution,
finding distribution of a given array, iterating over all indexes
in an array (which need not be consecutive integers), etc.

Parallel constructs of X10 are quite different from Java.
X10 has no Java-like threads, but its basic entity of par-
allel execution is an activity, which can be viewed as an
anonymous, lightweight thread. Each activity executes at
some place. Creating a new activity to execute a statement
S (at the place of the current activity) in parallel with the
other activities is done simply with async S. An activity
can access a local object at the same place directly, but
accessing a remote object at a different place requires
explicitly specifying the remote place, e.g., with the at (p)
S construct that executes the statement S at the place p. Other
parallel constructs in X10 include collecting finish, finish
S, which blocks the current activity until all activities

1Specifically X10 version 2.0.x.



1 public static def histogram(a: DistArray[Int], S: Int) {
2 val results = DistArray.make[Array[Int]](a.dist.places());
3
4 finish ateach ((p) in results) {
5 val t = new Array[Int](S);
6 for ((i) in (a.dist | p)) { async {
7 val bin = a(i) % S;
8 atomic t(bin)++;
9 } }

10 results(p) = t;
11 }
12
13 val sum = (a1: Array[Int], a2: Array[Int]) => {
14 val s = new Array[Int](a1.length);
15 for ((i) in a1) s(i) = (at(a1) a1(i)) + (at(a2) a2(i));
16 return s;
17 };
18 return results.reduce(sum, new Array[Int](S));
19 }

Figure 1. Distributed calculation of histogram

spawned directly or indirectly in S finish; atomic block,
atomic S, which executes the statement S atomically; and
clocks which represent a generalization of barriers.

B. Example Code and Execution

Figure 1 shows the code for our running example that
computes histogram for a given distributed array a and the
size of bins S. For instance, if S is 2, the code effectively
computes how many array elements are even and how many
are odd. The histogram method has three parts. First, it
creates (line 2) an array results distributed at the same
places where the elements of a are distributed. Second, it
collects the partial results at each place (lines 4-11). Third,
it combines these partial results (lines 13-18).

The second part starts with the ateach statement (line 4)
that spawns a new activity at each place p where results/a
reside. (Putting the loop variable p/i within ateach/for in
parentheses means that the variable ranges over the array
indexes rather than the array values.) Because of finish
(line 4), the main activity blocks until all the activities
created by ateach finish. Each such activity computes the
partial result for a place p in a temporary array t that is
created with S elements, by default all initialized to zero
(line 5). For each index i of the (sub)array a at the place
p (the operator ‘|’ effectively projects the array distribution
onto the given place), the code spawns an activity (at the
place p) that computes the bin value for the array element
a(i) and atomically increments the appropriate value in t.
In the end, there can be as many parallel activities executing
as there are array elements in a.2

The third part uses the library method reduce (from the
class DistArray) to combine the partial results from the
distributed array results.3 The method applies the given

2X10 provides syntactic sugar for some idioms we made explicit for
the sake of example, e.g., for (...) async S can be expressed as
foreach (...) S.

3The second part is similar to the scatter phase in reduce, but we
made it explicit for the sake of example.

...

8 3 0 2 3 7 6 6

at
o

m
ic

 t
(0

)+
+

at
o

m
ic

 t
(0

)+
+

at
o

m
ic

 t
(0

)+
+

at
o

m
ic

 t
(0

)+
+

at
o

m
ic

 t
(1

)+
+

at
o

m
ic

 t
(1

)+
+

place0 place1

a

3

1

2

2

at
o

m
ic

 t
(1

)+
+

at
o

m
ic

 t
(0

)+
+

re
d

u
ce

3

5

re
tu

rn

re
su

lt
s(

0
) 

=
 t

re
su

lt
s(

1
) 

=
 t

Figure 2. Example histogram execution with 2 places, array of length 8,
and bin size 2

reduction operator, in our example the function sum, that
performs the pairwise addition of elements of arrays a1 and
a2. These arrays are from different places where the array
results was distributed, and thus sum uses the at construct
to access the potentially remote elements (line 15). Note
that the reduce library method will perform the pairwise
addition of all arrays in results until it computes only one
array of size S that is returned as the result of histogram.

Figure 2 visualizes an example execution of histogram
for an input array a with eight (random) elements distributed
over two places and for S being two. Each vertical line
represents execution of an activity. After the second part,
the results distributed array holds the number of even/odd
elements at the two places, and in the third part, these
numbers are summed up into the final result.

The X10(-to-Java) compiler translates the input X10 code
into the appropriate Java code suitable for execution with
the X10 runtime. Of particular interest is the translation for
activities (created explicitly with async or implicitly within
ateach/foreach and even at constructs or within the
library methods such as reduce). X10 translates them into
lightweight tasks (using the Fork/Join framework available
since Java 7) executed using a pool of worker threads.
While this translation allows for efficient execution of X10
programs, it creates problems for exploration (in JPF or any
other model checking tool for Java).

C. Exploration Issues

The first problem is that the use of the thread pool in
the X10 runtime (or any other similar runtime) can hide
some parallelism. Our example execution has eight activities
for array elements, and consider the limit case where the
runtime uses only one worker thread for these activities.
Using only one thread effectively serializes the execution of



all these activities. If the code had a bug such as omitting
the keyword atomic (line 8), the bug would not be found
because the runtime would execute all activities atomically.
Hence, to enable JPF to explore all possible executions of
X10 programs, we had to change the X10 runtime to create
at least as many threads as there are activities during the
execution. Section III presents the related changes in detail.

The second problem is that the use of the thread pool and
other complexities of the X10 runtime make exploration of
X10 programs in JPF much costlier than it needs to be.
Namely, our goal is to check the X10 programs themselves,
but JPF explores Java, including the non-determinism from
the X10 runtime. For instance, our running example initially
timed out after two hours on JPF. However, we can signif-
icantly reduce this time by customizing the X10 runtime
for exploration (e.g., creating a bijective correspondence be-
tween activities and threads), changing JPF itself (e.g., how
it handles starting and joining for Java threads), changing
the X10 compiler (e.g., to translate ateach differently into
Java), and performing some static analysis (e.g., to find that
certain activities are place-local and cannot interact with
activities at different places). With all our optimizations, JPF
can explore this same running example in just 35 seconds.
Section IV presents our optimizations in detail.

III. COMPLETE EXPLORATION

As illustrated, running the unmodified X10 runtime on the
unmodified JPF model checker could miss some executions.
This section discusses the changes to the X10 runtime and
JPF that are necessary to enable complete exploration.

A. Changes to Runtime
The X10 runtime is designed for efficient execution of

X10 programs and not for exploration. In particular, creating
a (heavyweight) Java thread for each (lightweight) X10
activity would not be good for execution because Java
(kernel) threads require significant execution time and mem-
ory overhead (e.g. for initialization and stack allocation).
Instead, the X10 runtime uses a pool of Java threads that it
creates only once and then assigns activities to be executed
by these threads. When the same thread executes two or
more activities, it executes them serially one after another,
without interleaving the shared memory accesses from these
activities. This happens on both JVM and (unmodified) JPF.
While this provides one possible execution of X10 programs,
it does not provide all possible executions. Even if we
exhaustively tested an X10 program for one pool size and
found no bugs, it could have bugs for a different (larger)
pool size that has more interleavings among activities.

It is necessary to change the X10 runtime and/or JPF to
be able to explore all interleavings. By default, JPF explores
(all) interleavings of accesses from different Java threads.
Specializing JPF for X10 activities (such that JPF explores
interleavings from activities even when they are executed on

the same thread) could be done but is not a general solution.
Therefore, we opted to change the X10 runtime. Note that
it suffices to have at least as many Java threads in the pool
as the largest number of X10 activities that can execute
in parallel. A changed runtime can dynamically track the
number of activities and increase the pool size as necessary.
However, to make the exploration faster, we modified the
X10 runtime to create exactly as many Java threads as there
are X10 activities and to assign each activity to exactly one
thread. Section IV-C discusses this further.

B. Changes to Model Checker
JPF had several small deficiencies that prevented it from

executing X10 programs with either the original or the
modified X10 runtime. We changed JPF to remove these
deficiencies, and while these changes are more engineering
than research oriented, they still support our point that
building a high-quality model checking tool from scratch
takes very long time. Specifically, our changes to JPF can
be split into two groups. First, we added so called model
methods for several methods from the standard Java API or
from the JVM internal classes such as sun.misc.Unsafe.
JPF can interpret Java bytecodes, but it cannot execute
methods that are “native”, i.e., consists of machine code
executed outside of the JVM. Such methods have to be
modeled in JPF to ensure equivalent behavior and allow
backtracking. JPF already has models for a large part of
the standard Java library, but we had to support some more
methods used by the X10 runtime. Second, we found and
fixed four bugs in JPF. Our changes are already included in
the publicly available JPF distribution [21].

IV. FASTER EXPLORATION

Our goal is to check X10 programs themselves, at the level
of the X10 language semantics, and not for any particular
X10 runtime. However, checking X10 programs compiled
to Java (together with the X10 runtime) on JPF actually
explores these programs at the level of Java, including the
non-determinism from the X10 runtime. For example, the
original X10 runtime maintains a queue of activities to be
scheduled and a pool of worker threads, and the threads
can “steal” these activities to execute [7]. Without any
changes, JPF would explore various assignments in which
these threads can execute activities, e.g., for two threads t1
and t2 and two activities a1 and a2, one assignment is that
t1 executes a1 and t2 executes a2, and another assignment
is that t1 executes a2 and t2 executes a1. However, at the
level of X10 these are equivalent executions.

We made a number of changes to explore only the
executions required by the X10 semantics. These changes
are at several levels of the X10 and JPF systems: a static
analysis of X10 programs (Section IV-A), compiler from
X10 to Java (Section IV-B), X10 runtime (Section IV-C),
and JPF itself (Section IV-D).



A. Novel Static Analysis

We first describe how JPF uses a dynamic analysis of
Java objects to speed up its exploration of Java programs.
We then describe a new static analysis that we developed for
X10 programs and how to use the results of this analysis to
speed up exploration of X10 programs.

JPF performs a dynamic reachability analysis that infers
which Java objects are thread-local [27], [29], i.e., although
all Java objects reside on the system global heap, most
objects are only referenced from within the threads that
created them. JPF uses the information about thread-
local objects to prune the exploration of Java programs
(effectively performing a partial-order reduction [10] that
reduces the state space without missing any behavior). When
a program reads or writes a field of a shared object, JPF
needs to schedule all runnable threads to explore potential
dataraces. Such rescheduling is not required if the object is
thread-local. This optimization provides a substantially faster
exploration of Java programs in JPF [29].

We developed a static analysis that infers which X10
activities are place-local, i.e., which X10 activities access
only (X10) objects allocated at the same place. The X10
programming model makes each object place-local, i.e., each
object resides at one place, where it is created, during the
entire program execution.4 It is possible to have at one place
a remote reference to an object that resides at another place,
but no direct access to any (non-global) field of the remote
object is allowed. (The X10 system guarantees this mostly
statically through a type system that includes information
about places where objects reside, with some dynamic
checks and type casts for objects at unknown places.) The
only way to access a (non-global) field of the remote object
is indirect: to spawn an activity with async (P) or execute
the at (P) statement/expression at the place P where the
remote object resides. (The X10 compiler translates ’at
(P)’ into (several) remote ’async (P)’ activities.) Thus,
X10 makes communication among places explicit.

Our static analysis infers which of the activities (either
explicitly written with async or desugared by the compiler
from other statements/expressions) do not communicate with
remote places. The current implementation performs a sim-
ple intraprocedural analysis5 to find whether an activity body
spawns another activity at a different place. We implemented
our static analysis as a pass in the X10 compiler and added a
boolean isPlaceLocal flag to the (Java) object represent-
ing the activity. Our modified X10-to-Java compiler forwards
the analysis results to the X10 runtime and eventually to JPF
by changing the activity creation to appropriately set the flag.

4More precisely, some objects can be distributed, such as the
DistArray objects a and results in the example from Figure 1,
but in that case each object part resides at the same place during the entire
program execution.

5If an activity has any method call, we conservatively label it as not
place-local.

To illustrate our analysis on an example, recall the code
from Figure 1. The activities created in line 6 are place-local
as they spawn no new remote activities and access only local
objects. More precisely, the activities access only local parts
of distributed objects, and this would hold even if t(bin)
were replaced with results(p)(bin).

We modified JPF to use the information about place-
local activities to prune exploration. Effectively, our analysis
enables us to generalize JPF’s pruning for (one-)thread-local
objects to pruning for set-of-thread-local objects. The X10
compiler maps X10 objects and activities into Java objects
and threads, respectively. By default, accesses to non-thread-
local Java objects would make JPF schedule all runnable
threads. However, if a place-local activity accesses an object,
it suffices to schedule only those threads/activities executing
at the same place, i.e., the remote activities need not be
scheduled. We modified JPF such that for accesses to non-
thread-local objects, JPF uses the isPlaceLocal flag, the
place of the object, and the place of the activity to decide
whether or not to schedule a thread/activity.

B. Changes to Compiler

In addition to changing the X10 compiler to support our
static analysis, we made another change for the ateach con-
struct to enable faster exploration. The change for ateach
shows the trade-off between fast execution and fast explo-
ration. The X10 system developers built the existing X10
compiler and runtime to optimize execution speed, which in
many cases results in slower exploration.

After we observed that exploration of our simple examples
with the ateach construct was taking a significant amount
of time (Section V), we inspected the compiled version of
the programs and noticed that it creates many activities. The
statement ateach (p in D) S, where D is a distribution
of a number of points across places (e.g., distribution of the
indexes of a distributed array over places as in our example
in Figure 1), executes the statement S for every point in the
distribution at the place of that point. For instance, in our
running example (line 4), ateach is used to compute the
local histogram at each place p of the array.

The X10 language report [26] actually discusses two
ways to implement ateach and the effect that they have
on efficient execution. One way creates more activities
but less communication among them, and the other way
creates fewer activities but more communication among
them. While the report correctly argues that the former
is preferred for execution (where communication is more
costly than creating activities), the latter is preferred for
exploration (as it creates fewer activities/threads and hence
fewer scheduling choices and a smaller search space). We
added a compiler option to use the latter, which provided a
substantial improvement in exploration time (Section V).



C. Changes to Runtime
Similarly to changing the X10 compiler, we modified the

X10 runtime to favor exploration over execution speed. We
introduced a one-to-one mapping between X10 activities
and Java threads (Section IV-C1). We also realized that
exploration is sub-optimal for some X10 language constructs
because the runtime creates many activities that are not
required for the correctness but only for the performance
of execution. We modified the implementation of these con-
structs, specifically at and clocks, to create fewer activities
while preserving their semantics (Section IV-C2).

1) One Thread Per Activity: As discussed previously, the
X10 runtime uses lightweight tasks and Java thread pools
to execute X10 activities, which avoids the high cost of
creating Java threads in JVM and allows executing several
activities on the same thread. However, the relative cost
of creating Java threads in JPF is moderate since JPF is
an interpreter and uses its own thread representation with
its own scheduler. The cost of reusing the same thread
for several activities is actually higher, since JPF would
either miss some executions if there are not enough threads
(Section III-A), or it would systematically explore various
assignments of activities to threads although those assign-
ments are equivalent.

We modified the X10 runtime to create a new Java
thread for each activity when executing on JPF. Each such
thread executes only one activity and then gets garbage
collected. This one-to-one mapping ensures that the explo-
ration considers both all executions allowed by the X10
language semantics and also only executions due to the
X10 language semantics and not due to the specific X10
runtime implementation. We kept our change to the X10
code as small as possible because our goal is to make the
change easy to port when the X10 runtime evolves. For
example, we retained the queue of activities that each thread
maintains, but the queue always has size one. This change
allows us to directly reuse the state comparison (symmetry
reduction [10]) that JPF performs to prune the exploration
when it encounters equivalent states.

2) Single Memory Space: We first explain how X10
programs that are translated to Java execute in a single
memory space within one JVM (be it a regular JVM, such as
OpenJDK java, or a specialized backtrackable JVM, such
as JPF) even if they have several (logical) places. We then
describe how we optimized the execution and exploration of
two X10 language constructs for the case when they execute
in a single JVM.

As of this writing, there is no intermediate language or
a special virtual machine for X10, but the X10 system
developers decided to compile X10 programs to existing
languages, in particular C++ and Java. The Java runtime,
which we used, supports only execution on one machine,
more precisely on one JVM. While executing on one ma-
chine precludes speedup obtained from several machines,

executing on one machine is well suited for exploration. In
fact, the JPF core checks only non-distributed Java programs,
so had the X10 Java runtime been distributed, we would have
needed to modify the runtime or to use the JPF extensions
for distributed computing [4], [6].

We leveraged the fact that X10 executes on one JVM
(and thus all objects are directly accessible via references
in the same memory space) to allow one activity/thread
executing at one (logical) place to directly execute the code
at another (logical) place. Note that the optimizations that we
introduced for at and clocks are more general than just for
exploration; in other words, these optimizations also make
the execution faster in runtime that uses singe JVM.

At: The at (p) statement/expression executes a piece
of code at a place p, (potentially) different from the current
place where the current activity is executing. Unlike async
that spawns a new parallel activity and immediately contin-
ues execution of the current activity, at is synchronous and
blocks the current activity until the piece of code finishes
its execution. For instance, our running example (line 15)
uses at to access array elements that may reside at a
different place. A general implementation of at spawns
two new activities: one at the place p to execute the given
statement/expressions and another at the current place to
receive the result (or collect exceptions). However, creating
new activities every time is expensive for both execution and
exploration; for exploration, activities create not only addi-
tional threads that should be scheduled but also unnecessary
interleavings of the current activity (until it gets blocked)
and the newly spawned activities.

We developed two solutions in the runtime to optimize
the activities that at spawns. Ideally, we would like to
omit those activities completely. The first solution indeed
executes the remote statement/expression with the current
activity and does not create any new activity. Executing
within one activity the code at different places is possible
because everything is executed in the single memory space,
on one JVM. However, due to the current design of the X10
runtime (and our goal to keep changes relatively small), it
is possible to use this solution only if the remote statement
does not spawn new activities itself. The second solution is
to introduce a new activity, which we call a friend activity,
to execute the remote statement, but to disable the activities
that have friends from being scheduled. To control this
scheduling, we added a new, friend-aware scheduler in JPF.

Clocks: The X10 library class Clock represents a
generalization of a barrier. Any number of activities, which
can be at different places, can be registered at the same
clock. When an activity registered on some clock reaches a
certain execution point (specified by the next statement), it
blocks until all activities registered on the same clock reach
their corresponding execution points, after which they all
proceed. More details are available in the X10 report [26].
The key issue is that each clock, as any other X10 object,



resides at one place (where it is created), but all activities,
using the method calls from the Clock class, update the
state of that one object. These methods are small (e.g.,
incrementing a counter), so it is not necessary to spawn
new activities to perform them. Instead, as for at, the same
current activity can be used to execute the code at a different
place (since the current activity would be blocked anyhow).

For the at language construct, all the changes were in
the X10 runtime (i.e., in the Java code that implements the
at construct), but for the Clock library class, we also want
to change the X10 code for the library. However, in X10
we cannot simply use the same activity to execute the code
at another place because it gives a compiler error (as it
indeed should give). Thus, we slightly modified the X10
compiler to accept our annotations about the X10 code and
to insert special method calls for the runtime, after passing
all compiler checks.

D. Changes to Model Checker

We also modified JPF itself to enable faster exploration
of X10 programs. We focused on the Java constructs that
are heavily used by X10: thread operations (Section IV-D1)
and atomic sections (Section IV-D2).

1) Thread Operations: Since our modified X10 runtime
uses one Java thread per X10 activity, and since X10
programs can use a large number of activities, exploration
of X10 programs can execute a large number of thread
operations, including start that initiates thread execution
and join that waits for a thread to complete execution.
While JPF had implementations for these operations, our
careful analysis showed that they created many unnecessary
interleavings. In particular, start created a scheduling
choice, while join was implemented as a synchronized
method with a busy-wait loop. More generally, while JPF
employs an on-the-fly partial-order reduction [10], [29], it
is not very aggressive. As a result, programs with many
runnable threads can end up not only with a large number
of states but also encountering many transitions leading into
matched states, which is very detrimental to exploration
time, especially when these transitions are expensive (e.g.,
in X10 when processing large arrays). The join operation
was an example for this since it had no thread-external state
change in the loop (between the synchronization and the
wait choice point).

We added to JPF an option to not treat start as a
scheduling choice. Rather, when a new thread is started,
the current thread can keep executing until it accesses some
shared data (or sync) variable. This is a sound optimization
that can be always used (in fact, start is a typical “left
mover”, which makes it safe to not break the transition [23]).
Our optimization is already included in the publicly available
JPF [21]. We also changed join to be a non-synchronized
method that is native to JPF.

We also added a special support for the common
start/join pattern where one new thread is started and
then all the threads that are (recursively) started from the
new thread (and its descendants) need to eventually join
together. This pattern also provides support for the X10
construct finish S that blocks the current activity until
all activities created (recursively) by the execution of the
statement S finish.

Our optimizations have also inspired other changes in the
current JPF version 6, such as detection of shared objects
by precise thread access tracking instead of conservative
reachability analysis.

2) Atomic Sections: Most changes described so far are
sound because they either add more executions to be ex-
plored or prune from exploration some executions that are
provably equivalent to others and thus cannot miss any
behavior. The last change that we describe can miss some
behavior but also can provide a substantial speedup for ex-
ploration. This change considers the atomic keyword from
X10. For instance, our running example (line 8) atomically
increments an array element.

While executing atomic sections, JPF may encounter
accesses to some shared (non-thread-local) objects. As dis-
cussed previously (Section IV-A), for such accesses JPF
by default schedules all runnable threads for execution.
However, it is not necessary to schedule these threads if all
shared accesses are properly protected by atomic sections,
i.e., if there can be no concurrent access to a shared field
outside of atomic sections while the shared field is accessed
in an atomic section. In such cases, the current thread can
simply continue its execution.

We added to JPF an optimization to not schedule threads
for shared accesses in X10 atomic sections. These sections
are easy to recognize as the X10 compiler translates them
into special method calls in the X10 runtime. Moreover, JPF
already has code for tracking which locks protect which
objects. (That code worked only with the traditional Java
locks present since Java 1.0, but we also added support for
the java.util.concurrent [28] locks that are present
since Java 5 and used in the X10 runtime.) While this
optimization prunes exploration, it can miss some bugs when
there are improperly protected shared accesses. However, in
many such cases, JPF can issue a warning, effectively that
certain accesses were not considered not shared and have
not been explored, but they do appear to be shared.

V. EVALUATION

We implemented our changes to JPF in an extension called
X10X (“X10 eXplorer”). X10X also includes our changes to
the X10 system (compiler and runtime). Our changes are
controlled via command-line options such that one can run
the original or changed versions.

We evaluated X10X on a large set of over 100 X10
example programs. We used such an extensive evaluation



program Time (h:mm:ss) Speedup Memory (MB) #Transitions #States
Basic Opt. (x) Basic Opt. Basic Opt. Basic Opt.

Async/AsyncFieldAccess 1:23:57 0:00:25 201.48 444 167 100248 17 47032 18
Async/AsyncReturn 0:00:45 0:00:11 4.09 248 98 554 7 280 8
Async/AsyncTest2 >2:00:00 0:01:49 >66.06 - 260 - 131 - 83
Async/AsyncTest5 >2:00:00 0:06:50 >17.56 - 360 - 398 - 329
Async/ClockAsyncTest2 >2:00:00 0:00:11 >654.55 - 98 - 8 - 9
Async/AsyncNext 0:03:33 0:00:18 11.83 420 138 4376 11 1848 12
Async/AsyncTest3 1:37:46 0:00:25 234.64 428 163 48336 15 23247 16
Async/ClockAsyncTest 0:00:13 0:00:11 1.18 137 98 19 3 20 4
Finish/FinishTest1 0:00:46 0:00:11 4.18 247 99 559 7 274 8
Finish/FinishTest2 0:02:02 0:00:12 10.17 386 136 4224 27 1681 23
Future/Future0 0:08:20 0:00:11 45.45 402 108 18695 19 8577 19
Future/Future0a 0:08:20 0:00:11 45.45 404 107 18695 19 8577 19
Future/Future1 0:08:20 0:00:11 45.45 407 108 18695 19 8577 19
Future/Future1a 0:08:16 0:00:11 45.09 412 108 18695 19 8577 19
Future/FutureForce >2:00:00 0:00:28 >257.14 - 225 - 159 - 119
Future/FutureForced 0:31:21 0:00:11 171.00 418 107 94302 23 42167 23
Future/FutureTest2 0:07:59 0:00:12 39.92 408 108 18695 19 8577 19
Future/FutureTest5 >2:00:00 0:42:41 >2.81 - 585 - 9184 - 5776
AtEach/AtEach >2:00:00 0:00:30 >240.00 - 169 - 72 - 64
AtEach/AtEach2 >2:00:00 0:00:21 >342.86 - 166 - 42 - 34
AtEach/AtEachLoopOnArray >2:00:00 0:04:35 >26.18 - 342 - 11274 - 2058
For/ForLoop 0:00:28 0:00:08 3.50 189 98 228 5 110 6
For/ForLoop2 0:00:27 0:00:08 3.38 183 98 228 5 110 6
For/ForLoop3 0:00:27 0:00:08 3.38 183 98 228 5 110 6
For/ForLoop4 0:00:27 0:00:08 3.38 183 98 228 5 110 6
For/ForLoopOnArray 0:00:26 0:00:08 3.25 190 98 228 5 110 6
Place/AtCheck 0:00:26 0:00:08 3.25 181 98 228 5 110 6
Place/AtCheck2 0:00:25 0:00:08 3.13 176 98 228 5 110 6
Place/AtThisIntoAtHere 0:00:27 0:00:08 3.38 175 98 228 5 110 6
Place/CheckThisTypeInCall 0:00:26 0:00:08 3.25 175 98 228 5 110 6
Place/FieldReceiverIsExpr 0:00:26 0:00:08 3.25 175 98 228 5 110 6
Place/FieldWrite 0:00:26 0:00:08 3.25 176 98 228 5 110 6
Place/FutureFieldAccessStruct 0:11:03 0:00:13 51.00 417 138 19173 11 8810 12
Place/FutureGlobalMethodInvoke 0:10:59 0:00:12 54.92 417 139 19173 11 8810 12
Place/FutureGlobal...Rev >2:00:00 0:00:19 >378.95 - 164 - 17 - 18
Place/FutureGlobal...Static 0:11:51 0:00:13 54.69 405 138 19173 11 8810 12
Place/FutureGlobal...Struct 0:11:09 0:00:13 51.46 417 139 19173 11 8810 12
Place/FuturePropertyAccess 0:10:54 0:00:13 50.31 422 138 19173 11 8810 12
Place/FutureProperty...Rev >2:00:00 0:00:19 >378.95 - 163 - 17 - 18
Place/FutureProperty...Static 0:11:16 0:00:12 56.33 401 139 19173 11 8810 12
Place/GlobalAccess 0:11:10 0:00:12 55.83 415 139 19173 11 8810 12
Place/PlaceCheckArray >2:00:00 0:00:18 >400.00 - 166 - 17 - 18
Distribution/BlockDist 0:00:32 0:00:08 4.00 219 98 256 5 126 6
Distribution/BlockDist2 0:06:12 0:00:55 6.76 621 420 228 5 110 6
Distribution/BlockDist...Set 0:00:26 0:00:08 3.25 187 98 228 5 110 6
Distribution/ConstDist 0:31:00 0:00:09 206.67 419 99 42973 13 19489 14
Distribution/DistBounds1D >2:00:00 0:00:26 >276.92 - 161 - 23 - 24
Distribution/DistBounds2D >2:00:00 0:00:44 >163.64 - 243 - 75 - 75
Distribution/DistBounds3D 0:02:04 0:00:09 13.78 363 99 4910 9 2281 9
Distribution/DistributionTest 0:00:26 0:00:08 3.25 185 99 234 5 116 5
Distribution/DistributionTest1 0:00:26 0:00:08 3.25 183 98 234 5 116 5
Distribution/Restrict 0:00:27 0:00:09 3.00 182 98 228 5 110 6
Atomic/Atomic2 0:00:49 0:00:11 4.45 297 97 632 7 316 8
Atomic/AtomicMethodTest 0:00:37 0:00:09 4.11 271 99 981 20 481 17
Atomic/AtomicOrdered 0:02:25 0:00:16 9.06 395 174 1586 26 746 23
Atomic/AtomicReturn 0:00:25 0:00:08 3.13 176 99 234 5 116 5
Atomic/AtomicTest 0:00:36 0:00:09 4.00 239 98 981 20 481 17
Atomic/AwaitTest 1:54:45 0:00:10 688.50 452 108 439065 66 114735 49
Atomic/AwaitTest2 0:00:21 0:00:08 2.63 185 99 228 5 110 6
Atomic/ConditionalAtomicTest >2:00:00 0:54:34 >2.20 - 436 - 193342 - 101117
Atomic/WhenReturn 0:00:26 0:00:08 3.25 186 99 228 5 110 6
Atomic/WhenReturnAll 0:00:26 0:00:08 3.25 183 100 228 5 110 6
At/AtFieldAccess 0:24:31 0:00:12 122.58 425 138 54395 13 24719 14
At/AtFieldWrite 0:04:07 0:00:11 22.45 391 97 7006 10 3309 11
At/AtNext 0:03:32 0:00:11 19.27 391 98 5959 10 2754 11

Figure 3. Exploration statistics for programs from the X10 compiler distribution



program Time (h:mm:ss) Speedup Memory (MB) #Transitions #States
Basic Opt. (x) Basic Opt. Basic Opt. Basic Opt.

ArraySum >2:00:00 0:00:49 >146.94 - 250 - 180 - 92
FSSimpleDist 0:01:21 0:00:11 7.36 309 98 1273 8 556 8
GCSpheres 0:00:27 0:00:08 3.38 182 98 25 3 18 4
Histogram 0:15:20 0:00:10 92.00 408 109 50328 36 18268 20
HistogramDist >2:00:00 0:00:35 >205.71 - 268 - 188 - 147
KMeans 0:00:14 0:00:06 2.33 129 71 25 3 18 4
KMeansSPMD 0:00:14 0:00:06 2.33 132 71 53 3 34 4
MontyPi >2:00:00 0:00:10 >720.00 - 141 - 21 - 22
NQueensDist >2:00:00 0:00:18 >400.00 - 161 - 26 - 26
NQueensPar 1:40:40 0:00:18 335.56 468 167 251124 43 101883 26
SPOR >2:00:00 0:01:44 >69.23 - 397 - 1618 - 987
StructSpheres 0:00:27 0:00:08 3.38 195 98 25 3 18 4
TutorialSum 0:00:51 0:00:08 6.38 385 98 1149 8 482 8
WhenBoundedBuffer >2:00:00 0:00:21 >342.86 - 186 - 519 - 293

Figure 4. Exploration statistics for larger programs: 11 samples from the X10 distribution, and 3 our examples

set because one goal was to ensure that X10X can support
a significant subset of the X10 language (in fact, X10X
supports all parallel constructs from X10). The other goal
was to measure how our techniques improve exploration. We
compare the basic mode, where the X10 runtime and JPF are
modified only to enable complete exploration (Section III)
and the optimized mode with all our changes for faster
exploration (Section IV). We tabulate the total exploration
time, the required memory (as reported by JPF), and the
state-space size (the number of transitions and states).

Our experiments use JPF version 5.0 with the default con-
figuration setting (depth-first search, state matching based
on isomorphism [20], etc.), including the memory limit of
1GB. All experiments were performed on an Intel Pentium
4 3.4GHz desktop, running Linux 2.6.28-18 and Sun’s JVM
1.6.0 20. We set the time limit of 2 hours for each run.

Figure 3 shows the results for all 65 example programs
from the X10 compiler distribution that focus on parallel lan-
guage constructs. X10X provides a substantial speedup, with
the average (geometric mean) of 19.1x. We also explored
31 simple examples that we wrote to understand language
constructs. The geometric mean of the speedup provided by
our techniques for our examples is 10.6x.

Figure 4 shows the results for 11 larger sample X10
programs from the X10 distribution, and 3 of our larger
programs (HistogramDist which is our running example,
SPOR, and WhenBoundedBuffer). X10X provides an av-
erage (geometric mean) speedup of 44.2x. Note that the
relative speedup increases for programs that have larger
exploration (in terms of time or state-space sizes).

While our goal was to evaluate X10X performance and
not look for bugs, we still encountered a bug, specifically in
the file x10.tests/examples/Constructs/Async/-
ClockAsyncTest.x10, one of the examples from the
X10 distribution. X10X reported a potential deadlock in
ClockAsyncTest. We inspected the source file and con-
firmed the deadlock property violation, caused by a finish
statement used in combination with a clock/barrier.

VI. RELATED WORK

Our work studies how to obtain a high quality model
checking tool for a new (parallel) language in a relatively
short amount of time, which typically precludes building
a tool from scratch. Previous work on this topic mostly
followed two approaches.

One approach is to create a translator from the source
language to the target language for which a model-checking
tool is available. Several tools use this approach, e.g.,
Bandera [11] automatically extracts from the Java code
a model that can be verified by some of the existing
model checkers; Bogor [25] translates Java and some other
languages to the Bogor Modeling Language; etomcrl [5]
translates Erlang programs to µCLR; FeaVer [19] extracts
a Promela model [18] from the C code, driven by user-
specified annotations; and the first version of JPF [16], [17]
translated Java code also into Promela that was checked
using Spin [18]. The problems with the translation approach
is that it may not support all features of the source language,
and it may need to translate not only the program to be
checked but also the libraries/runtime that it depends on. Our
work on X10X leverages the existing X10-to-Java compiler
that can translate the entire X10 language and produces
Java code that can be checked, together with the X10
runtime written in Java, with JPF. For a complete and faster
generation, however, we had to change the compiler, the
runtime, and JPF.

Another approach to build a model checker for a new lan-
guage is to modify its runtime. For example, McErlang [14]
is a model checker for programs written in the Erlang
programming language. McErlang modifies the concurrency
system of the runtime library to enable verification. As
another example, Basset [22] is a generic framework for
verification of programs written in the Actor programming
model [2]. Basset can support multiple actor languages but
requires that their runtime be modified to connect to the
Basset core. Our work also modifies the X10 runtime, but
we additionally provide a new static analysis, modify the
compiler, and change JPF.



VII. CONCLUSIONS

New parallel languages are emerging, and their adoption
can be faster if they come with good development tools.
Particularly important for parallel languages are tools for
systematic testing. In this paper, we presented how to
adapt an “old” model checker, such as JPF, to check a
new language, such as X10. While we presented specific
techniques for X10 and JPF, our overall approach generalizes
to other languages and model checking tools. To model
check a new language with an “old” model checker, one
has to consider both problems of complete exploration and of
faster exploration. Also, for the best possible results, one has
to employ techniques that modify the model checker, change
the language runtime, extend the compiler, and perform
static analysis.

ACKNOWLEDGMENTS

We would like to thank Steven Lauterburg and the at-
tendees of the JPF Workshop at Google for their feedback
on this work. This material is based upon work partially
supported by the National Science Foundation under Grant
Nos. CCF-0916893 and CCF-0746856, and by an IBM X10
Innovation Award. Milos Gligoric was supported by the
Mission Critical Technologies, Inc. and NASA.

REFERENCES

[1] Intel(R) threading building blocks, September 2009. http:
//www.threadingbuildingblocks.org/.

[2] G. Agha. Actors: A model of concurrent computation in
distributed systems. MIT Press, Cambridge, MA, USA, 1986.

[3] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen,
S. Ryu, G. L. S. Jr., and S. Tobin-Hochstadt. The Fortress
language specification, 2008. http://projectfortress.sun.com/.

[4] C. Artho and P.-L. Garoche. Accurate centralization for
applying model checking on networked applications. In ASE,
2006.

[5] T. Arts and C. B. Earle. Development of a verified Erlang
program for resource locking. In FMICS, 2001.

[6] E. Barlas and T. Bultan. NetStub: A framework for verifica-
tion of distributed Java applications. In ASE, 2007.

[7] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. J. ACM, 46, 1999.

[8] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge.
Verifying multi-agent programs by model checking. AAMAS,
12, 2006.

[9] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In
OOPSLA, 2005.

[10] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

[11] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera: Extracting finite-state
models from Java source code. In ICSE, 2000.

[12] Cray, Inc. Chapel language specification 0.795, April 2010.
http://chapel.cray.com/.

[13] C. DeMartini, R. Iosif, and R. Sisto. A deadlock detection
tool for concurrent Java programs. SPE, 1999.

[14] L. Fredlund and H. Svensson. McErlang: A model checker
for a distributed functional programming language. In ICFP,
2007.

[15] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M.
Narayanamurthy, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava. Building a high-level dataflow system on top
of Map-Reduce: The Pig experience. VLDB Endow., 2, 2009.
http://hadoop.apache.org/pig/.

[16] K. Havelund. Java PathFinder, a translator from Java to
Promela. In SPIN, 1999.

[17] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. STTT, 1999.

[18] G. Holzmann. The model checker SPIN. TSE, 1997.

[19] G. Holzmann and M. Smith. Software model checking -
extracting verification models. In FORTE, 1999.

[20] R. Iosif. Exploiting heap symmetries in explicit-state model
checking of software. In ASE, 2001.

[21] JPF home page. http://babelfish.arc.nasa.gov/trac/jpf/.

[22] S. Lauterburg, M. Dotta, D. Marinov, and G. A. Agha. A
framework for state-space exploration of Java-based actor
programs. In ASE, 2009.

[23] R. J. Lipton. Reduction: A method of proving properties of
parallel programs. CACM, 18, 1975.

[24] C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-
Burlet, M. R. Lowry, S. Person, and M. Pape. Combining
unit-level symbolic execution and system-level concrete exe-
cution for testing NASA software. In ISSTA, 2008.

[25] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible
and highly-modular software model checking framework. In
FSE, 2003.

[26] V. Saraswat. Report on the programming language X10, April
2010. http://x10.codehaus.org/.

[27] S. D. Stoller. Model-checking multi-threaded distributed Java
programs. In SPIN, 2000.

[28] M. Ujma and N. Shafiei. JPF-Concurrent: An extension of
Java PathFinder for java.util.concurrent. In Java PathFinder
Workshop, 2011.

[29] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking
programs. Springer ASE-J, 10, 2003.



[30] X10 home page. http://x10.codehaus.org/.

[31] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta,
J. Duell, S. L. Graham, P. Hargrove, P. Hilfinger, P. Husbands,
C. Iancu, A. Kamil, R. Nishtala, J. Su, M. Welcome, and
T. Wen. Productivity and performance using partitioned
global address space languages. In PASCO, 2007.

[32] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level
language. In OSDI, 2008.


